Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay and Cpx stress responses in Escherichia coli.

نویسندگان

  • Kerry L Evans
  • Suresh Kannan
  • Gang Li
  • Miguel A de Pedro
  • Kevin D Young
چکیده

Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance.

Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a sin...

متن کامل

The Rcs Phosphorelay System and RcsB Regulated rprA Contribute to Intrinsic Antibiotic Resistance in Escherichia coli Exposed to Antibiotics Targeting the Cell Wall

Bacteria orchestrate gene expression to cope with stressful conditions. Physical and antibiotic stressors induce regulators of stress response pathways to allow enhanced bacterial survival. The Rcs phosphorelay system regulates rprA, a small non-coding RNA which in turn regulates translation of RpoS, in addition to genes important for the production of capsule. RpoS is a central regulator of th...

متن کامل

Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell.

The envelope of bacteria is a complex multilayered shield that ensures multiple essential functions, including protecting the cell from external assaults. Hence, bacterial cells have evolved intricate mechanisms called envelope stress response systems (ESRS) to monitor all kinds of perturbations affecting the integrity of their envelope and to mount an appropriate response to contain or repair ...

متن کامل

The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli.

Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems c...

متن کامل

Defective lipoprotein sorting induces lolA expression through the Rcs stress response phosphorelay system.

The Escherichia coli LolA protein is a lipoprotein-specific chaperone that carries lipoproteins from the inner to the outer membrane. A dominant negative LolA mutant, LolA(I93C/F140C), in which both (93)Ile and (140)Phe are replaced by Cys, binds tightly to the lipoprotein-dedicated ABC transporter LolCDE complex on the inner membrane and therefore inhibits the detachment of outer membrane-spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 19  شماره 

صفحات  -

تاریخ انتشار 2013